

Mahatma Gandhi Missions College of Engineering & Technology

Introduction

- Tricycles are the 3-wheeled vehicles that has two wheels either at the front end or rear end.
- These kind of vehicle can be manually operated or automatically operated powered at front or rear end.
- A three Wheeled vehicle comprises a frame with a rear axle assembly that mounts a pair of spaced rear Wheels.
- Drift trikes are like three wheeled go karts with smooth rear wheels that allow the trike to slide sideways around corners.
- Drift trikes are tricycles that have slick rear wheels, normally made from a hard plastic, often PVC.
- Motorized trikes can be powered by motorcycle engines, smaller automatic transmission scooter motors, or electric motors.
- They are designed to drift, by intentionally initiating loss of traction to the rear wheels and counter-steering to negotiate corners. They are usually ridden on paved roads with steep downhill gradients, with corners and switchbacks.

Project Objectives

- Design and fabrication of a single rider, automatically operated trike.
- To make the three-wheeled vehicle drift.

Methodology

Design and Fabrication of Moto Drift Trike

Aman Kumar, Chitr Kumar Sharma, Praveen Bhadula, Tushar Arora **Department of Mechanical Engineering**

Results and Discussion

No.	Vehicle Specification	Target	Actual
1	Wheel base	100-130 cm	111 cm
2	Track width	90-120 cm	110 cm
3	Ground clearance	Maximum 7 inches	5 inches
4	Engine	2-stroke (125cc)	2-stroke (98cc)
5	Brakes	double disc brakes	Single disc brake

Overall Performance

S. No.	Aspect	Value
1	Total mass	40 kg (approx.)
2	Maximum velocity	40 kmph
3	Turning radius	3 m

IMAGES

Conclusions

- The fabrication of the drift trike was completed with great satisfaction.
- Our prime motive was to limit the money invested in building the drift trike and this objective was well achieved.
- The following modifications can be implemented on the vehicle to improve its overall performance in the future:
 - > An engine with the higher power rating can be used to increase the speed and overall performance of the trike.
 - > The thickness of tubes can be increased so as to form a more rigid base and support heavier weights.
 - > Double disc brakes can be installed to increase the braking effect.

References

- Er. Vikas Gulati et al, "Design and FEA of a Recumbent Trike", International Journal of Applied Engineering Research, ISSN 0973-4562 Vol.7 No.11 (2012)
- Adedipe Oyewole et al, "Design and Construction of a Motorized Tricycle for Physically Challenged Persons", AU J.T. 13(1): 61-63 (Jul. 2009).
- Emma Braegen, Drift Trike Physics and Design
- Patrick Fenner, "On the Golden Rule of Trike Design", Deffered Procrastination, 4 October 2010
- Rickey Horwitz, "The Recumbent Trike Design Primer", Hell Bent Cycles, 2010

Guided by: Mr. Ram Prakash (Head of department)

